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Trigonometric polynomial B-spline with shape parameter
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Abstract

The basis function of n order trigonometric polynomial B-spline with shape parameter is constructed by an integral ap-

proach. The shape of the corstructed curve can be adjusted by changing the shape parameter and it has most of the properties of B-spline.

The ellipse and circle can be accurately represented by this basis function.
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B-spline is very useful to computer aided geome-
try design, and there have been different B-splines
put forward such as the uniform trigonometric poly-
2.3 .

, ete. To adjust
the shape of curves or change the position of curves,

nomial B—spline[ "cB Sp]ine[

the weights in rational Bezier curves and rational B-

[ 4.5]

spline curves can be used. B-spline also has some

deficiencies, for example, the position of B-spline
curve is fixed for a given control point; if we want to
adjust the shape of a curve, the control polygon must
be changed. When the control poly gons are fixed, the
curves with shape parameter constructed in Ref. [ 6]
can rectify the shape of curves by adjusting the shape
shape parameter is within
[ —1, 1] . Basky created the B spline curve' s which
has the properties of convex hull, local control, varia-

parameters and the

tion diminishing, etc. The B spline has two ad-
justable parameters so the curves are G continuous.
In this paper, the k order (k=2) trigonometric
polynomial B-spline curve with shape parameter is
given and the quadratic trigonometric polynomial
curve with shape parameter in Ref. [ 6] is used as a
special example. Since the k order trigonometric
polynomial B-spline with shape parameter has one
shape parameter and the continuous orderis C=k— 1
—m, m = max{the multiplicities m; of knot #;},
different curves can be created by adjusting the shape
parameter in the invariable control polygon, which
possesses many structure and geometry properties of
the B-spline curves.

trigonometric polynomial B-spline with shape parameter; basis function. CAGD.

1 Construction of the basis function and its
properties

For the partition of the given ¢ parameter axis
T:lti) s ti<tit1» i=0, =1, -5 we define the

trigonometric polynomial B-spline with shape parame-

ter as:
Sl'sZ(}\s t)
Tt|: 1+>\ (fil‘i) B
4 Mo(ti—t)
>\ 1 ti
7thtuj{| ’ ti<l< tit1s
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0 otherwise,
t
Si. k(A )= mJS, 1 (A x)dx
1 t
_mJ&,“Sm,;ﬂ(k, x)dx,
k=3,

o k(A)= J Sik (A x)dx, — 1< A<1.

Here we consider that any 0/0 is 0.

When k=2, from its definition we can easily
deduce all the properties of Si.x (A, ) (i=0, *1,
42, ---). Because there are k mnonzero intervals in
Si. k(A £), we define Si.k (A, ¢) as the k order or
k—1 degree trigonometric poly nomial B-spline basis
with shape parameter and A is the shape parameter.
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Proposition 1. Positivity:
Sik (A1) =0, t € (—og Fo0),

Proof. The proposition holds for k=2, obvious-
ly. Assuming that the proposition holds for k= n—

1, when k=n, we have

6,11*1( >\): J, i Si, n*l(>\s t)dx> 09
i=0, £1, £2, ---.
From the definition of Si.» (A, ¢), we have
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Obviously, both f; (¢#) and fi+,(#) have at most one
zero.
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Assume that G{,72>G/,,:lz, then
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Therefore, fi+;(¢) has at most one zero.

If G;,72< Gi,,ilz, it can also be proved that

fi+; () has at most one zero.

So Sf,n,:z)(l, t) has at most n zeros in ¢ €[
ti+n] . Based on the Rolle theorem, S; , (X, ¢) has
at most 2n—2 zeros in <[ ¢, ti+n] . On the basis
of the definition of S, (A, #). t;and t;-, are the
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n— 1 order zeros of S ,(A, t), respectively, so we

have Si n (A, £)70, t €Ctiy titn).

t '
Since S;, , (A, )= J Jﬁ \ Si2(A, x)dx -

—o0

2

dx>0, 1€ (¢, ti+1), the proposition holds for
Si,n<>\9 1)207 ZG(_OO,+OO). Q.E.D.

Proposition 2.

Si,k()\9 t

ocal support:
>0, € U tin)

= 0, otherwise.

Proposition 3. Partition of unity:
DS ) =1, k=3,

Proof. When ¢t <[ ti+5—1s tit 4 »

DISik(h 0

itk

= 2085k (h x)
y t
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Proposition 4. Derivative formula:

Sie (A D =5 Sk e D)

1
- 7 )\9 .
S pa (oSt (A 0

Proof. Based on the_definition of Sir(A 8,
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Differentiating about ¢ on both sides of the above e-
quation simultaneously, we have
1
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Proposition 5. Linear independence: S x (A, Ol

(i=0, £1, £2, ---) are linearly independent for
t€ (—oo +c0), In Sik CA 1),

particular,

Sit1 kA 1)y =4 Sit i k(A 1), (n=k) are linearly
independent within [ fi+i—1s ti+n+1] -

Proof. The proposition holds for £ =2 obvious-

ly . Assuming that the proposition holds for k= n,
: 1 + oo . :

—FF——Qq. N - _

we obtain that 5 ()\)S,, 2 (X, )] L are linearly in

dependent.

Co nsidering Z%Si, a1 (A ) =0 and differen-

tiating about ¢ on its both sides simultaneously, we

!
have 2301,-5,-,#1 (A, £)=0. Due to proposition 4,

i
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Because 5.0 Sion (A 1) are linearly in

dependent, we have o,= o1 =a, (=0, =1, -

From Z%Si,m 1 (A £)=0, we have 20& a1 (A
t)=—a ZSi,n+l<>\9 t)=0. Therefore, =0, and

Si w1 (A B T are linearly independent. Q. E.D.

Proposition 6. Continuous:

The continuous order of S;, x(A, ¢) in the global
parameter space is C=k— 1— m,
m= max {the multiplicities m; of knot ¢} .

t!:\\f/.\\tk‘ i

Proof. The proposition is easily proved by math-
ematical induction and definition of S, (A, ).

Q.E.D.

2 Trigonometric polynomial B-spline curve
with shape parameter

The set of k order trigonometric polynomial B-
spline with shape parameter defined within [ a, b]
(a= tk,» b= tn+1) constitutes a linear space denoted
by 4 a. b] . Obviously, Stk (X, £), S2x (A )
v Su k(A t) (n=k) are a set of bases in [ a,
b] . Figure 1 illustrates the uniform trigonometric
polynomial B-spline basis with shape parameter. Us-
ing Si. k(A £)y (i=1,2, 4 n), acurve in X[ a,
b] can be defined as
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Pe(h )= D PSi k(A 1)
i=1

< t<<tyt1» n=k (D
where P; (i=1, 2, -+, n) are control points. Figure 2
shows a piece of five order uniform trigonometric
polynomial B-spline curve with shape parameter (A=
—1) and five order uniform B-spline curve. Similar
to the B-spline curve, the trigonometric polynomial
B-spline curve with shape parameter possesses proper-
ties as follows:

f b

Fig. 1. Set of bases S, (A, £), =+ S, (A ) in Qf t0 £, ] .

Fig. 2. A pieceof five order uniform B-spline curve (dashed line)
and five order uniform trigonometric polynomial B-spline curve with

shape parameter (solid line A=—1).

Proposition 7. Convex hull property: Px (A, 1),
(t;/ =<<t<ti+1, i=k, --- n) lies inside the convex hull
of the corresponding control polygon Pi—k+1, -+ Pi.
It can be deduced from the non-negative and partition
of unity of the trigonometric poly nomial B-spline basis
with shape parameter.

Proposition 8. Geometric invariance: The shape
of the curve represented by Eq. (1) is independent of
the choice of coordinate system because P (A, ¢) is
an affine combination of the control points.

Proposition 9. Local control property: The
change of one of the control points will change at
most k segments of the original trigonometric poly no-
mial B-spline curve with shape parameter.

Proposition 10. Continuous: The continuous or-
der of curve P;, (A, ) is C=k—1— m in m multi-
plicities knot, and the globally continuous order of

curve Pi v (A, t) is C=k—1—r, r= max {the

A

t
ikt

multiplicities m; of knot ¢} .

Proposition 11. Derivative formula:

a n
~ )\, - i >\9 A i
P D ;S 1 (A DAP
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Inference 1: The 7 order derivative of the curve
Pir(A, 1), (=t ty11)is
8’ n
SR D= 20800, (n DA'P
i=rtl
r — 09 19 ) k_29
AﬁlpiiAr*IPi
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from the derivative formula (2).

—L It can be deduced

where AP, =

3 Conclusion

Different curves lying k order B-spline nearby
can be created by the approach proposed in this pa-
per. By changing the shape parameter we can adjust
the curve to approximate the control poly gon. The el-
lipse and circle can be accurately represented by this

W9, We can design curves by choosing

basis functio
different shape parameters in — 1<CA<C1. Since the
trigonometric poly nomial B-spline with shape parame-
ter possesses many properties and structures the same
as that of the B-spline and preserves some practical
geometry properties of B-spline, it is more convenient
to be used. However, there are some deficiencies in
trigonometric polynomial B-spline with shape parame-
ter, such as how to control the shape parameter.
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